Abstract
Background and ObjectiveComputer aided diagnosis technology has been widely used to diagnose autism spectrum disorder (ASD) from neural images. The performance of the model usually depends largely on a sufficient number of training samples that reflect the real sample distribution. Due to the lack of labelled neural images data, multisite data are often pooled together to expand the sample size. However, the heterogeneity among sites will inevitably lead to a decline in the generalization of models. To solve this problem, we propose a multisource unsupervised domain adaptation method using rough adjoint inconsistency and optimal transport. MethodsFirst, we define the concept of rough adjoint inconsistency and propose a double quantization method based on rough adjoint inconsistency and Dempster-Shafer (D-S) evidence theory to estimate the weight coefficient of each source domain to accurately describe the importance of each source domain to the target domain. Second, using optimal transport theory, we weaken the data distribution differences between domains and solve the problem of class imbalance by adjusting the sampling weights among classes. ResultsThe ASD recognition accuracy of the proposed method is improved on all eight tasks, which are 70.67%, 64.86%, 62.50%, 70.80%, 73.08%, 71.19%, 75.41% and 75.76%, respectively. Our proposed model achieves superior performance compared to traditional machine learning methods and other recently proposed deep learning model. ConclusionsOur method demonstrates that the fusion of rough adjoint inconsistency and optimal transport can be a powerful tool for identifying ASD and quantifying the correlations between domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.