Abstract
Image semantic segmentation methods based on convolutional neural network rely on supervised learning with ground truth, thus cannot be well extended to datasets that all of the data are unlabeled. Domain adaptation can solve the problem of inconsistent feature distribution between target and source domains. However, when the spatial resolution of remote sensing images in the source and target domains are not the same, those domain adaptation methods are not effective. In this paper, we propose a bi-directional semantic segmentation method based on super-resolution and domain adaption (BSSM-SRDA). With the help of generative adversarial learning, the method accomplishes semantic segmentation task from a low-resolution labelled data source domain to a high-resolution unlabelled data target domain by reducing differences in resolution and feature distribution. In addition, we propose a self-supervised learning algorithm that helps the domain discriminator to focus on those target data that has not been aligned with the source domain. The experiments demonstrate the superiority of the proposed method over other state-of-the-art methods on two remote sensing image datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.