Abstract

This article focuses on possible automation of dolphin whistle track estimation process within the context of Multiple Target Tracking (MTT). It provides automatic whistle track estimation from raw hydrophone measurements using the Sequential Monte Carlo Probability Hypothesis Density (SMC-PHD) filter. Hydrophone measurements for three different types of species namely bottlenose dolphin (Tursiops truncates), common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba) have been used to benchmark the tracking performance of the SMC-PHD filter against three major challenges- the presence of multiple whistles, spontaneous death/birth of whistles and multiple whistles crossing each other. Quantitative analysis of the whistle track estimation accuracy is not possible since there is no ground truth type track for the dolphin whistles. Hence visual inspection of estimated tracks has been used corroborate the satisfactory tracking performance in the presence of all three challenges. DOI: http://dx.doi.org/10.3329/dujs.v62i1.21954 Dhaka Univ. J. Sci. 62(1): 17-20, 2014 (January)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.