Abstract

The early lithification of carbonate mud during the subaerial exposure stage under semiarid conditions has been proposed to facilitate dolomite formation. However, how the biogeochemical processes during subaerial diagenesis promote dolomite formation remains unclear. Here, we employ a multiproxy approach to investigate the process of dolomite formation by analysing modern dolomite crusts forming in lagoon Brejo do Espinho. Petrological analysis reveals that the crusts consist of coexisting high-Mg calcite and dolomite. Low Fe and Mn concentrations indicate the formation of dolomite under oxic conditions, whereas a higher Sr concentration in well-lithified crust suggests primary bacterial-induced dolomite precipitation. The Mg isotopic composition of the crusts exhibits a lighter value than that of modern sabkha dolomite, suggesting different dolomitization processes and Mg sources. The more negative δ 13 C values of the crusts than those of the unlithified carbonate mud in lagoon Brejo do Espinho indicate the incorporation of 13 C-depleted organic carbon. The biogeochemical processes related to decaying organic matter during subaerial diagenesis generate partially oxidized organic matter that promotes Mg 2+ dehydration and enhances the dissolution of primary high-Mg calcite, ultimately triggering the transition of high-Mg calcite to dolomite and/or the direct precipitation of dolomite. The ancient ‘dolomite factory’ operated through the cyclic deposition of carbonate sediments and penecontemporaneous subaerial diagenesis. Thematic collection: This article is part of the Towards unravelling the ‘Dolomite Problem’: new approaches and novel perspectives collection available at: https://www.lyellcollection.org/topic/collections/towards-unravelling-the-dolomite-problem

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.