Abstract

BackgroundCholestasis is characterized by accumulation of bile components in liver and systemic circulation. Restoration of bile acid homeostasis via activating farnesoid x receptor (FXR) is a promising strategy for the treatment of cholestasis. FXR-SHP (small heterodimer partner) axis plays an important role in maintaining bile acid homeostasis. PurposeTo investigate the anti-cholestasis effect of Dolomiaea souliei (Franch.) C.Shih (D. souliei) and clarify its underlying mechanism against α-naphthylisothiocyanate (ANIT) induced acute intrahepatic cholestasis. MethodsANIT-induced Sprague-Dawley rats were employed to investigate the anti-cholestasis effect of D. souliei ethyl acetate extract (DSE). Ursodeoxycholic acid (UDCA) was used as positive control. Bile flow and blood biochemical parameters were measured. Liver histopathological examination was conducted via hematoxylin-eosin staining. Western blot analysis was carried out to evaluate the protein levels related to bile acids metabolism and inflammation. The interactions between FXR and costunolide or dehydrocostus lactone, were conducted by molecular docking experiments. The effect of costunolide and dehydrocostus lactone on aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and FXR expression were also evaluated using guggulsterone-induced L02 cells. ResultsDSE could promote bile excretions and protect against ANIT-induced liver damage in cholestasis rats. Protein levels of FXR, SHP, Na+/taurocholate cotransporter (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) were increased and the expressions of cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) were decreased by DSE. Meanwhile, the anti-inflammatory factors, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were also significantly increased, and the pro-inflammatory factor, interleukin-10 (IL-10), was significantly decreased in rats of DSE groups. Molecular docking revealed that costunolide and dehydrocostus lactone could be well docked into the FXR protein molecule, and hydrophobic interactions played the main function. Costunolide could reverse the increased AST and ALT levels and increase the FXR expression in guggulsterone-induced L02 cells. ConclusionDSE had an anti-cholestasis effect by activating FXR-SHP axis, inhibiting synthesis of bile acid, and increasing bile secretion, together with inflammatory response and improving liver injury. Costunolide may be the main active component. This study provided a potential therapeutic mechanism for D. souliei as an anti-cholestasis medicine in the treatment of cholestasis liver diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call