Abstract

Dolichyl phosphate concentrations, a primary factor in regulating the rate of N-glycosidically linked glycoprotein synthesis, are dependent upon a cytidine triphosphate (CTP)-dependent dolichol kinase. This study examines dolichol kinase in rat testicular microsomes and defines assay conditions. As with dolichol kinases from other tissues, addition of 2-mercaptoethanol increased activity 60%. Inclusion of NaF, an inhibitor of testicular dolichyl phosphate phosphatase activity, also resulted in a 38% increase in activity. Triton X-100 was necessary for phosphorylation of both endogenous and exogenous dolichol; however, concentrations of detergent in excess of 0.25-0.35% were inhibitory. A 2- to 5-fold stimulation of kinase activity was obtained by addition of 50-100 microM exogenous dolichol. The high level of nucleoside triphosphatase activity in testicular microsomes mandated the inclusion of high levels of uridine triphosphate (UTP) to protect the [gamma-32 P] CTP. Increasing UTP concentrations up to 50 mM resulted in increased product formation. A clear requirement for divalent cations was observed; 5 mM ethylenediaminetetraacetate (EDTA) abolished activity. The following order of cation effectiveness was observed: Mn greater than or equal to Ca greater than Cd greater than Zn much greater than Mg. Ten mM optima were established for Ca2+ and Mn2+; the presence of UTP, however, results in significantly reduced concentrations of free Ca2+. Ion combination studies demonstrated interactive inhibitory effects between Ca2+ and other stimulatory divalent cations. Addition of 2 microM brain calmodulin, in the presence of 10 mM Ca2+, resulted in a 75-100% stimulation of activity.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.