Abstract
We show that ifM is the total space of a holomorphic bundle with base space a simply connected homogeneous projective variety and fibre and structure group a compact complex torus, then the identity component of the automorphism group ofM acts trivially on the Dolbeault cohomology ofM. We consider a class of compact complex homogeneous spacesW, which we call generalized Hopf manifolds, which are diffeomorphic to S1 ×K/L whereK is a compact connected simple Lie group andL is the semisimple part of the centralizer of a one dimensional torus inK. We compute the Dolbeault cohomology ofW. We compute the Picard group of any generalized Hopf manifold and show that every line bundle over a generalized Hopf manifold arises from a representation of its fundamental group.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.