Abstract
Hydrogels are used in the treatment of soft tissue damage, controlled drug release systems, tissue/organ production with 3D bioprinters, smart material production, and many other tissue engineering studies. Although polymers obtained from natural polymers or synthetically produced polymers are used in hydrogel production, they may have various biocompatibility problems. In this study, Pericardial fluid structure (PFS) was used to increase the biocompatibility of the alginate and was used in the production of bioink for use in 3D bioprinters. PFS is a structure isolated from pericardial fluid (PF) and consists of complex components that are very similar to natural Extracellular Matrix (ECM) both morphologically and in content. According to the results of SEM images, the collagen-elastin fiber network was clearly observed in the groups with PFS added, since PFS contains high levels of collagen and elastin proteins. It was concluded that the biocompatibility of the material was also increased thanks to the structure similar to the natural ECM in the alginate hydrogels with PFS added.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Çukurova Üniversitesi Mühendislik Fakültesi Dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.