Abstract

Large-scale neutron facilities such as the Spallation Neutron Source (SNS) located at Oak Ridge National Laboratory need easy-to-use access to Department of Energy Leadership Computing Facilities and experiment repository data. The Orbiter thick- and thin-client and its supporting Service Oriented Architecture (SOA) based services (available at https://orbiter.sns.gov) consist of standards-based components that are reusable and extensible for accessing high performance computing, data and computational grid infrastructure, and cluster-based resources easily from a user configurable interface. The primary Orbiter system goals consist of (1) developing infrastructure for the creation and automation of virtual instrumentation experiment optimization, (2) developing user interfaces for thin- and thick-client access, (3) provide a prototype incorporating major instrument simulation packages, and (4) facilitate neutron science community access and collaboration. The secure Orbiter SOA authentication and authorization is achieved through the developed Virtual File System (VFS) services, which use Role-Based Access Control (RBAC) for data repository file access, thin-and thick-client functionality and application access, and computational job workflow management. The VFS Relational Database Management System (RDMS) consists of approximately 45 database tables describing 498 user accounts with 495 groups over 432,000 directories with 904,077 repository files. Over 59 million NeXus file metadata records are associated to the 12,800 unique NeXus file field/class names generated from the 52,824 repository NeXus files. Services that enable (a) summary dashboards of data repository status with Quality of Service (QoS) metrics, (b) data repository NeXus file field/class name full text search capabilities within a Google like interface, (c) fully functional RBAC browser for the read-only data repository and shared areas, (d) user/group defined and shared metadata for data repository files, (e) user, group, repository, and web 2.0 based global positioning with additional service capabilities are currently available. The SNS based Orbiter SOA integration progress with the Distributed Data Analysis for Neutron Scattering Experiments (DANSE) software development project is summarized with an emphasis on DANSE Central Services and the Virtual Neutron Facility (VNF). Additionally, the DANSE utilization of the Orbiter SOA authentication, authorization, and data transfer services best practice implementations are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call