Abstract
Traditionally, Groebner bases and cylindrical algebraic decomposition are the fundamental tools of computational algebraic geometry. Recent progress in the theory of regular chains has exhibited efficient algorithms for doing local analysis on algebraic varieties. In this note, we present the implementation of these new ideas within the module AlgebraicGeometryTools of the RegularChains library. The functionalities of this new module include the computation of the (non-trivial) limit points of the quasi-component of a regular chain. This type of calculation has several applications like computing the Zarisky closure of a constructible set as well as computing tangent cones of space curves, thus providing an alternative to the standard approaches based on Groebner bases and standard bases, respectively. From there, we have derived an algorithm which, under genericity assumptions, computes the intersection multiplicity of a zero-dimensional variety at any of its points. This algorithm relies only on the manipulations of regular chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.