Abstract

We have developed a dual-component artificial nerve graft comprising an outer microporous conduit of chitosan and internal oriented filaments of polyglycolic acid (PGA). The novel graft was used for bridging sciatic nerve across a 30-mm defect in six Beagle dogs, which were used as a chitosan/PGA graft group. The other Beagle dogs were divided into an autograft group (n = 6) as the positive control and a non-grafted group (n = 5) as the negative control. All animals of three groups were monitored for changes in their appearance and locomotion activities after surgery. Their posture and gait were recorded regularly with the aid of photographs and videotapes for each dog. Six months post-operatively, a combination of electrophysiological examination, FluoroGold retrograde tracing, histological assessment including light microscopy and transmission electron microscopy, immunohistochemistry as well as morphometric analyses to both regenerated nerves and target muscles was utilized to investigate the nerve repair effects of our artificial nerve graft. The results demonstrated that, in the chitosan/PGA graft group, the dog sciatic nerve trunk had been reconstructed with restoration of nerve continuity and functional recovery, and its target skeletal muscle had been re-innervated, improving locomotion activities of the operated limb. This study proves the feasibility of the chitosan/PGA artificial nerve graft for peripheral nerve regeneration by bridging a longer defect in a large animal model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.