Abstract
We consider a K-user multiple-input single-output (MISO) broadcast channel (BC) where the channel state information (CSI) of user i(i = 1, 2, ..., K) may be either instantaneously perfect (P), delayed (D) or not known (N) at the transmitter with probabilities λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sup> , λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sup> and λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sup> , respectively. In this setting, according to the three possible CSIT for each user, knowledge of the joint CSIT of the K users could have at most 3 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K</sup> states. Although the results by Tandon et al. show that for the symmetric two user MISO BC (i.e., λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sup> = λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</sub> , ∀ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> ∈ {1, 2}, Q ∈ {P, D, N}), the Degrees of Freedom (DoF) region depends only on the marginal probabilities, we show that this interesting result does not hold in general when K ≥ 3. In other words, the DoF region is a function of all the joint probabilities. In this paper, given the marginal probabilities of CSIT, we derive an outer bound for the DoF region of the K-user MISO BC. Subsequently, we investigate the achievability of the outer bound in some scenarios. Finally, we show the dependence of the DoF region on the joint probabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.