Abstract

Winter road maintenance (WRM) has been shown to have significant benefits of improving road safety and reducing traffic delay caused by adverse weather conditions. It has also been suggested that WRM is also beneficial in terms of reducing vehicular air emissions and fuel consumptions because snow and ice on road surface often cause the drivers to reduce their vehicle speeds or to switch to high gears, thus decreasing fuel combustion efficiency. However, there has been very limited information about the underlying relationship, which is important for quantifying this particular benefit of a winter road maintenance program. This research is focused on establishing a quantitative relationship between winter road surface conditions and vehicular air emissions. Speed distribution models are developed for the selected Ontario highways using data from 22 road sites across the province of Ontario, Canada. The vehicular air emissions under different road surface conditions are calculated by coupling the speed models with the engine emission models integrated in the emission estimation model - MOVES. It was found that, on the average, a 10% improvement in road surface conditions could result in approximately 0.6–2% reduction in air emissions. Application of the proposed methodology is demonstrated through a case study to analyse the air emission and energy consumption effects under specific weather events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call