Abstract

We evaluated a hypothesis derived from the metabolic theory of ecology (MTE) that the ratio of microzooplankton herbivory (m) to phytoplankton growth (μ) will arise in a warming ocean because of the different temperature dependencies of autotrophic and heterotrophic organisms. Using community‐level growth and grazing data from dilution experiments, generalized additive models (GAMs) were constructed to describe the effects of temperature and chlorophyll on m : μ. At low chlorophyll levels, m : μ decreases with increasing temperature, whereas at high chlorophyll levels, m : μ increases initially with temperature before reaching a peak and then declines. These complex responses of m : μ result from mixed effects of temperature and chlorophyll on microzooplankton biomass (Bz), biomass‐specific microzooplankton grazing rate (m : Bz), and phytoplankton growth rate (μ). Bz decreases with rising temperature and increases with rising chlorophyll. m : Bz increases with temperature and decreases with chlorophyll. Nutrient‐enriched growth rate of phytoplankton (μn) and μ increase with increasing temperature and chlorophyll. Holding chlorophyll constant, the calculated activation energies of m : Bz and μn are 0.67 ± 0.05 and 0.36 ± 0.05 eV, respectively, both consistent with previous MTE estimates for heterotrophs and autotrophs. Our study indicates that warming may enhance phytoplankton losses to microzooplankton herbivory in eutrophic but not in oligotrophic waters. The GAM analysis also provides important insights into underlying system relationships and reasons why community‐level responses in natural systems may depart from theory based on laboratory data and individual species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.