Abstract

Abstract Silvicultural treatments designed to enhance stand structural diversity may result in increased wind damage. The ability to avoid conditions that might lead to excessive wind damage would benefit forest managers. We analyzed wind damage following implementation of a variable-density thinning at four sites on the Olympic National Forest in northwest Washington. The prescription created small canopy gaps and retained unthinned patches within a uniformly thinned matrix, thus creating substantial amounts of internal edge. Our objective was to determine whether variable-density thinning resulted in elevated wind damage and whether the damage was spatially related to elements of the treatment, i.e., canopy gaps and uncut patches. Wind damage on the thinned plots averaged slightly more than 8.0 trees/ha. Although precise determinations of residual stem densities were not available, we estimate that total wind damage amounted to 1.3% of total stems remaining following treatment. Approximately 80% of the wind damage was blowdown, the remaining damage being stem breakage, leaning, or bowing. Nearly 54% of the damaged stems were less than 20 cm dbh. The maximum amount of damage observed was 51 trees/ha, but only 3 of 13 thinned plots had wind damage exceeding 7 trees/ha. The overall level of wind damage across all thinned plots after two growing seasons was not statistically greater than on unthinned control plots. Internal edges created by gaps, skid trails, and unthinned patches did not inherently increase wind damage risk; however, where gaps were located in topographically vulnerable positions, greater wind damage did occur. Overall wind damage was not excessive on any of the plots, and after 2 years, all residual stands remained intact and in a manageable condition. Our preliminary results suggest that variable-density thinning that includes creation of small canopy gaps does not necessarily predispose stands to greater risk of wind damage than uniform thinning. However, care must be taken in locating gaps and skid trails away from topographically vulnerable positions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call