Abstract

We have investigated the roles of tyrosine (Tyr) and tryptophan (Trp) residues in the four-electron reduction of oxygen catalyzed by Streptomyces coelicolor laccase (SLAC). During normal enzymatic turnover in laccases, reducing equivalents are delivered to a type 1 Cu center (CuT1) and then are transferred over 13 Å to a trinuclear Cu site (TNC: (CuT3)2CuT2) where O2 reduction occurs. The TNC in SLAC is surrounded by a large cluster of Tyr and Trp residues that can provide reducing equivalents when the normal flow of electrons is disrupted. Prior studies by Canters and co-workers [J. Am. Chem. Soc. 2009, 131 (33), 11680-11682] have shown that when O2 reacts with a reduced SLAC variant lacking the CuT1 center, a Tyr108• radical near the TNC forms rapidly. We have found that the Tyr108• radical is reduced 10 times faster than CuT12+ by excess ascorbate, possibly because of radical transfer along Tyr/Trp chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call