Abstract

We present here two patients and three control subjects to demonstrate the clinical utility of studying evoked otoacoustic emissions and their contralateral suppression, as an aid to the delineation of afferent neuron dysfunction and possible lack of efferent suppression. The key patients here who fail to show contralateral suppression of their very robust otoacoustic emissions, concomitantly show paradoxically absent auditory brainstem responses (ABRs) and absence of middle ear muscle reflexes despite normal audiograms in the 2 kHz region and normal tympanograms. One of these patients has nearly normal pure tone sensitivity up to 3 kHz. The other has normal sensitivity in the 2 kHz region, but poor sensitivity on either side of that frequency. In addition, the two patients of interest show absent masking level differences and inordinately poor speech discrimination. Three ‘foils’ are presented: one patient with poor hearing on either side of 2 kHz, one with Bell's Palsy, and the third with bilateral temporal lobe disease. These patients show respectively that(1) isolated normal hearing at 2 kHz,(2) absence of middle ear muscle reflexes and (3) conscious cortical awareness of sound do not contribute directly to this intriguing clinical state. We propose that these patients with absent ABRs suffer from an auditory nervous system dysfunction which disrupts access to the efferent system. This condition also disables whatever systems contribute to the neural synchrony inherent in recording compound far-field action potentials such as the ABR. There are a number of hypotheses to be considered here. One suggests that the key patients are deficient in synchronous activation of Type I afferent fibers to the degree that they cannot activate efferent feedback, or they may be able to use only so-called Type II afferent neurons to support their normal zones of pure tone sensitivity. A less likely consideration focuses on the notion that discharge of primary neurons might be in some way synchronized by an efferent system which in these patients is the primary source of deficit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.