Abstract

AbstractThe question was examined under which conditions the water extraction rate of plant roots in the field can be limited by water transport to the roots. For this purpose we used a numerical solution of the single root model. Scenario calculations were carried out in order to investigate the general model behaviour. A sensitivity analysis showed that initial volumetric water content and root length density are of greater importance than root diameter in determining the maximum water transport rate to the roots.Data from a field experiment were taken, describing root length density, volumetric water content and water uptake rates under oats (Avena saliva L.) and faba beans (Vicia faba L.) as model input parameters. With this data the model calculated the water content difference between the bulk soil and the root surface which is necessary to induce a water flow to the roots matching the observed water uptake rate. Root length densities below the grain legume crop faba beans are one order of magnitude lower compared to that of the cereal crop oats. The therefore higher specific water influx rates of faba beans roots resulted in a higher decrease in water content near the root surface. However, water uptake by faba beans was controlled by the water flow towards the roots probably only in deeper soil layers with very low root length density. For the given conditions no transport limitation of water uptake was calculated, when rooting densities were higher than about 0.1 cm.cm−3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call