Abstract

We investigated the effect of the presence of an additive anion while forming a self-assembled monolayer of a thiol-functionalized redox active species upon the behavior in aqueous solutions. A bromide salt was added in an acetonitrile solution of a thiol-functionalized viologen (viologen-thiol: N-pentyl-N′-(11-mercapto)undecyl-4,4′-bipyridinium bishexafluorophosphate) in which the self-assembled monolayer was formed on a polycrystalline Au electrode. We examined the structure and electrochemical behavior of the resulting monolayer-modified electrode in three different aqueous electrolyte solutions. The viologen-thiol monolayer prepared in the presence of Br− exhibited obviously different behavior in both KBr and KF electrolyte solutions from that prepared in the absence of Br−. On the other hand, the difference was minor in KPF6 solution. The difference of the electrochemical behavior was represented by the coverage of the viologen-thiol and the formal potential of viologen dication/radical cation redox couple. The memory that the viologen-thiol monolayer was formed in the presence of Br− was retained in KF and KBr solutions, though it was erased in the electrolyte solution containing PF6−, which is a softer anion than Br−. However, no definitive difference of the film structure was deduced from the electroreflectance study in regard to the monomer content and the average orientation of the viologen moiety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.