Abstract

BackgroundObesity is a growing health problem worldwide. Morbid obesity has been associated with significant barriers to effective thoracic cage compression during cardiopulmonary resuscitation. ObjectiveThe BariBoard™ purports to improve adequacy of chest compressions in morbidly obese patients. This study uses a simulation model to evaluate this. MethodsThis was a prospective blinded randomised-controlled crossover pilot trial using a simulation model of obesity. Participants, recruited from hospital departments and prehospital services, performed 2 minutes of continuous compressions on mannequins modified to emulate a morbidly obese patient. Participants were randomised by coin toss to a sequence of either control/intervention or intervention/control, with the BariBoard™ in the intervention arm. Accelerometers measured chest wall movement during compressions. The primary endpoint was a composite measure of compression adequacy (rate, depth, and recoil). Secondary endpoints comprised the individual components of the composite outcome, as both dichotomous outcomes (adequate vs. inadequate) and continuous variables. All endpoints were adjusted for potential confounders. ResultsOf 205 participants recruited, 201 were analysed. There was a significant difference in the primary outcome between the control and intervention arms (13.4% vs. 4.5%, respectively, p = 0.001) and between the control and intervention arms for the secondary endpoints of adequate compression depth (31.3% vs. 15.9%, p < 0.001) and recoil (63.7% vs. 41.3%, p < 0.001). After adjustment for confounders and interactions, there was no difference in overall efficacy (odds ratio: 0.62, 95% confidence interval: 0.20–1.90, p = 0.40). ConclusionThis pilot study describes the successful assessment of a device using a simulation model of obesity. Within these constraints and after adjustment for confounders, use of the BariBoard ™ did not improve efficacy of chest compressions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.