Abstract

BackgroundVigabatrin (VGB) is an anti-epileptic medication which has been linked to peripheral constriction of the visual field. Documenting the natural history associated with continued VGB exposure is important when making decisions about the risk and benefits associated with the treatment. Due to its speed the Swedish Interactive Threshold Algorithm (SITA) has become the algorithm of choice when carrying out Full Threshold automated static perimetry. SITA uses prior distributions of normal and glaucomatous visual field behaviour to estimate threshold sensitivity. As the abnormal model is based on glaucomatous behaviour this algorithm has not been validated for VGB recipients. We aim to assess the clinical utility of the SITA algorithm for accurately mapping VGB attributed field loss.MethodsThe sample comprised one randomly selected eye of 16 patients diagnosed with epilepsy, exposed to VGB therapy. A clinical diagnosis of VGB attributed visual field loss was documented in 44% of the group. The mean age was 39.3 years ± 14.5 years and the mean deviation was -4.76 dB ±4.34 dB. Each patient was examined with the Full Threshold, SITA Standard and SITA Fast algorithm.ResultsSITA Standard was on average approximately twice as fast (7.6 minutes) and SITA Fast approximately 3 times as fast (4.7 minutes) as examinations completed using the Full Threshold algorithm (15.8 minutes). In the clinical environment, the visual field outcome with both SITA algorithms was equivalent to visual field examination using the Full Threshold algorithm in terms of visual inspection of the grey scale plots , defect area and defect severity.ConclusionsOur research shows that both SITA algorithms are able to accurately map visual field loss attributed to VGB. As patients diagnosed with epilepsy are often vulnerable to fatigue, the time saving offered by SITA Fast means that this algorithm has a significant advantage for use with VGB recipients.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2415-14-166) contains supplementary material, which is available to authorized users.

Highlights

  • Vigabatrin (VGB) is an anti-epileptic medication which has been linked to peripheral constriction of the visual field

  • VGB was initially approved for use within the United Kingdom and several other European countries in 1989 it is well established that VGB therapy can induce peripheral constriction of the visual field

  • It is well recognised in perimetry that the false negative catch trial methods are not suitable for estimating patient attentiveness in eyes with significant visual field loss visual field loss as the frequency of false-negative responses in eyes with visual field defects is associated with amount of field loss [21]

Read more

Summary

Introduction

Vigabatrin (VGB) is an anti-epileptic medication which has been linked to peripheral constriction of the visual field. SITA uses prior distributions of normal and glaucomatous visual field behaviour to estimate threshold sensitivity. Vigabatrin attributed visual field loss is two and a half times more common with automated static perimetry when compared to manual kinetic perimetry [14]. Static perimetry is normally carried out using the Swedish Interactive Threshold Algorithms (SITA). These algorithms were developed with the specific aim of offering a significant reduction in examination time but without sacrificing any loss in the accuracy of threshold estimation when compared to the Full Threshold and FASTPAC algorithms [16,17]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call