Abstract
ABSTRACT The first generation of metal-free (Population III) stars are crucial for the production of heavy elements in the earliest phase of structure formation. Their mass scale can be derived from the elemental abundance pattern of extremely metal-poor (EMP) stars, which are assumed to inherit the abundances of uniformly mixed supernova (SN) ejecta. If the expanding ejecta maintains its initial stratified structure, the elemental abundance pattern of EMP stars might be different from that from uniform ejecta. In this work, we perform numerical simulations of the metal enrichment from stratified ejecta for normal core-collapse SNe (CCSNe) with a progenitor mass $25 \ {\rm M_{\bigodot }}$ and explosion energies 0.7–10 B ($1 \ {\rm B} = 10^{51} \ \rm erg$). We find that SN shells fall back into the central minihalo in all models. In the recollapsing clouds, the abundance ratio [M/Fe] for stratified ejecta is different from the one for uniform ejecta only within ±0.4 dex for any element M. We also find that, for the largest explosion energy (10 B), a neighbouring halo is also enriched. Only the outer layers containing Ca or lighter elements reach the halo, where [C/Fe] = 1.49. This means that C-enhanced metal-poor stars can form from the CCSN even with an average abundance ratio [C/Fe] = −0.65.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.