Abstract

Experiments have been carried out in acid soils developed under tropical climates with and without phosphate rock (PR) addition to assess the ability of the Pi strip method to extract available soil P compared with the Isotopic Exchange Kinetics method (IEK). In the Pi strip method strips of filter paper, previously impregnated with iron hydroxide acting as a sink for phosphate ions from soil components, are added to an aqueous soil suspension. The extracted phosphate ions are eluted in diluted sulfuric acid and quantified by a colorimetric method. Available soil P, defined as the amount of phosphate ions that can move from the soil particles to soil solution, is described by three factors: an intensity factor, a quantity factor and a capacity factor. These three factors were determined by the IEK-method. Following the addition of carrier-free 32PO4-ions to soil, the ability of the Pi strip to extract available soil P was assessed: (i) by comparing the quantity of instantaneously exchangeable P (E1) to the quantity extracted with the Pi strip; (ii) by determining the fraction of 32P extracted with the Pi strip, and (iii) by comparing the specific activity (SA) of P present as phosphate ions extracted by the Pi strip to the specific activity of P in the soil solution. It was observed that (i) E1 and the amount extracted with the Pi strip are highly correlated, (ii) the recovery of 32P extracted by the Pi strip varies between 17 and 66%, and (iii) the specific activity of P extracted by the Pi strip is of the same order of magnitude as that of P in the soil solution. In acid soils low in available P, part of the P in aqueous KCl-extracts is presumably not only present as free phosphate ions but also occluded in the form of a soluble complex, whose isotopic exchangeability is significantly lower than that of phosphate ions transferred to the Pi strip. It is concluded from the results that the Pi strip method can be recommended in routine analysis for the determination of the quantity factor. However, this method cannot provide intensity or capacity factors and therefore needs to be complemented by the IEK-method for full characterization of the available soil P status.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call