Abstract

Until recently, the majority of experts would have replied "yes" to the question in the title of this commentary. In fact, the answer is not so evident. Recent investigations have permitted us to gain insight into the similarities and the differences between the mechanisms of these two remarkable monooxygenases. In the generally accepted mechanism of cytochrome P-450, reductive activation of dioxygen and the presence of an external electrophile leads to heterolytic O-O bond cleavage to yield water and a highly electron-deficient terminally bound iron oxenoid species that is capable of attacking unactivated hydrocarbons by an electrophilic mechanism. The recently suggested "bridge mechanism" for sMMO involves homolytic O-O bond cleavage of a diferric "side-on" peroxide intermediate to yield a bridged intermediate bis-μ-oxo-diiron(IV) species, in which both oxygen atoms are derived from the dioxygen molecule. In contrast to terminal oxenoid species, this bridged diiron(IV) intermediate has stronger steric selectivity for substrates; this explains the unusual selectivity observed in sMMO alkane oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call