Abstract

Density functional theory (DFT), Moller-Plesset (MP) perturbation theory, and coupled-cluster calculations are used to examine low-energy minima on the potential energy surface of the formic acid tetramer (HCOOH)(4). The potential energy surface is rather flat with respect to rotation of one of the dimers, relative to the other dimer in an aligned stack, about the axis passing through the inversion centers of the dimers. Our best calculations suggest that an aligned pi-pi stack of two dimers is very likely to be the global minimum but there are two other pi-pi stacks within 0.5 kcal /mol. Moreover, a fourth pi-pi stack, a planar association of two dimers held together by C-H...O interactions, and a bowl structure all lie within 1 kcal /mol of the lowest-energy structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.