Abstract

AbstractSecondary seed dispersal by ants (myrmecochory) is an important process in semi‐arid environments where seeds are transported from the soil surface to an ant nest. Microsites from which ants often remove seeds are the small pits and depressions made by native and exotic animals that forage in the soil. Previous studies have demonstrated greater seed retention in the pits of native than exotic animals, but little is known about how biotic factors such as secondary seed dispersal by ants affect seed removal and therefore retention in these foraging pits. We used an experimental approach to examine how the morphology of burrowing bettong (Bettongia lesueur), greater bilby (Macrotis lagotis), short‐beaked echidna (Tachyglossus aculeatus) and European rabbit (Oryctolagus cuniculus) foraging pits and ant body size influenced ant locomotion and seed removal from pits along an aridity gradient. Ants took 3.7‐times longer to emerge from echidna pits (19.6 s) and six‐times longer to emerge from bettong pits (30.5 s) than from rabbit pits (5.2 s), resulting in lower seed removal from bettong pits than other pit types. Fewer seeds were removed from pits when cages were used to exclude large body‐sized (>2 mm) ants. Few seeds were removed from the pits or surface up to aridity values of 0.5 (humid and dry sub‐humid), but removal increased rapidly in semi‐arid and arid zones. Our study demonstrates that mammal foraging pit morphology significantly affects ant locomotion, the ability of ants to retrieve seeds, and therefore the likelihood that seeds will be retained within foraging pits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call