Abstract

The effect of the molecular orientation on the molecular electronic structure is studied on the Cu-phthalocyanine∕graphite system via film thickness dependences of metastable-atom electron spectra and ultraviolet photoelectron spectra. We observed a decrease in the vacuum-level position and a corresponding band-bending-like shift in the highest occupied state only for thick films where the molecular tilt angle increases gradually with the film thickness. These shifts are explained by electric dipoles produced in the film by a gradient of the intermolecular electronic interaction along the surface normal due to the continuous increase in the molecular tilt angle. The result indicates that the change in the molecular orientation is an important origin of the band-bending-like shift in the molecular electronic states even if the molecule has no permanent electric dipole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call