Abstract

BackgroundIn this study we tested whether the seasonal variations in levels of selected biomarkers of oxidative stress in female nail technicians occupationally exposed to low levels of volatile organic compounds (VOCs) differ significantly from those observed among healthy unexposed controls. Airborne levels of selected VOCs in nail salons were also analyzed and tested for associations with seasonal variations of the levels of biomarkers among nail technicians.MethodsThe study enrolled 145 female nail technicians and 145 healthy unexposed female controls. The airborne VOCs and levels of biomarkers were assessed by GC-MS chromatography and absorption/fluorescence spectrophotometry, respectively.ResultsPlasma levels of thiobarbituric acid reactive species, ceruloplasmin, the activity of glutathione peroxidase (GPx1) and the SOD1/GPx1 activity ratio presented significant differences between the so-called “hot” and “cold” seasons in the case of nail technicians as well as in unexposed controls (p < <0.0001 for all four biomarkers). The pattern of these variations among nail technicians was found to be significantly different compared to that of the control subjects (p < <0.0001). Although such differences might intuitively be attributed to occupational exposure of nail technicians to VOCs, which was found to be higher during the “cold” season compared to the “hot” one, our study provided only limited evidence in favor of the hypothesis, that the different pattern of seasonal variations of biomarkers among nail technicians might have resulted from seasonal fluctuations in their occupational exposure to VOCs.ConclusionFurther investigation is thus needed in order to elucidate the effect of low-level occupational exposure to VOCs on seasonal variations of biomarkers of oxidative stress.Electronic supplementary materialThe online version of this article (doi:10.1186/s12995-016-0125-6) contains supplementary material, which is available to authorized users.

Highlights

  • In this study we tested whether the seasonal variations in levels of selected biomarkers of oxidative stress in female nail technicians occupationally exposed to low levels of volatile organic compounds (VOCs) differ significantly from those observed among healthy unexposed controls

  • In this study we aimed to investigate whether the levels of selected markers of oxidative stress in nail technicians occupationally exposed to VOCs present any kind of seasonal variation and if so, whether these changes differ significantly from those found in general control population

  • We evaluated a panel of biomarkers of oxidative stress (the plasma levels of thiobarbituric acid-reactive species (TBARS) and ceruloplasmin (Cp), the blood plasma activity of glutathione peroxidase (GPx3), the red blood cells’ activities of GPx1, zinc-copper superoxide dismutase (SOD1) and the SOD1/GPx1 ratio) in female nail technicians working in nail salons during the late spring/summer and late autumn/winter season and test their differences against healthy unexposed controls

Read more

Summary

Introduction

In this study we tested whether the seasonal variations in levels of selected biomarkers of oxidative stress in female nail technicians occupationally exposed to low levels of volatile organic compounds (VOCs) differ significantly from those observed among healthy unexposed controls. An increasing amount of evidence is available suggesting that prolonged occupational exposure to volatile organic compounds (VOCs; including ethanol, acetone, toluene or xylene) may result in increased levels of biomarkers of oxidative stress, DNA damage and dysregulation of cellular antioxidant defense and trigger processes leading possibly to carcinogenesis [1,2,3,4,5,6,7,8]. It is, a bit astounding, that some studies report these adverse outcomes to be observable if no biological and occupational exposure limits are being exceeded [9, 10]. Precise mechanisms underlying these effects are currently unknown, the role of oxidative stress is anticipated, as well (see [13])

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call