Abstract

Ascending thoracic aortic aneurysm (ATAA) ruptures are life threatening phenomena which occur in local weaker regions of the diseased aortic wall. As ATAAs are evolving pathologies, their growth represents a significant local remodeling and degradation of the microstructural architecture and thus their mechanical properties. To address the need for deeper study of ATAAs and their failure, it is required to analyze the mechanical behavior at the sub-millimeter scale by making use of accurate geometrical and kinematical measurements during their deformation. For this purpose, we propose a novel methodology that combined an accurate tool for thickness distribution measurement of the arterial wall, digital image correlation to assess local strain fields and bulge inflation to characterize the physiological and failure response of flat unruptured human ATAA specimens. The analysis of the heterogeneity of the local thickness and local physiological stress and strain was carried out for each investigated subject. At the subject level, our results state the presence of a non-consistent relationship between the local wall thickness and the local physiological strain field and high heterogeneity of the variables. At the inter-subject level, thicknesses were studied in relation to physiological strain and stress and load at rupture. The rupture pressure was correlated with neither the average thickness nor the lowest thickness of the specimens. Our results confirm that intrinsic material strength (hence structure) differs a lot from a subject to another and even within the same subject.

Highlights

  • Aneurysm rupture involving thoracic aorta is one of the principal causes of vascular disease-related death, accounting for an annual age- and sex-adjusted incidences of 3.5 per 100,000 individuals

  • Our results demonstrate that precisely knowing the local thickness would not be decisive in mechanically assessing the severity of a single aneurysmal case with such methods

  • Understanding the interplay between the heterogeneous thickness and the microstructure of Ascending thoracic aortic aneurysm (ATAA) and their mechanical behavior up to failure is a topical subject with practical implications concerning the computational mechanics and its applications in clinics

Read more

Summary

Introduction

Aneurysm rupture involving thoracic aorta is one of the principal causes of vascular disease-related death, accounting for an annual age- and sex-adjusted incidences of 3.5 per 100,000 individuals. These aneurysms are ascending thoracic aortic aneurysm (ATAA) in 85% of the cases (Clouse et al, 2004). Aortic mechanical strength stems from the content and architecture of cellular and matrix constituents, i.e., vascular smooth muscle cells (SMC), elastin, collagen, and ground substance, which vary greatly within the thickness of the wall (Weisbecker et al, 2013; Schriefl et al, 2015) and locally in all directions (Cavinato et al, 2017)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.