Abstract

Planar scintigraphy with 123I-radiolabeled metaiodobenzylguanidine (123I-mIBG) is an important imaging modality to evaluate neuroblastoma. In recent years, Single Photon Emission Computed Tomography combined with Computed Tomography (SPECT/CT) has revolutionized nuclear medicine. Nevertheless, the addition of the CT has increased the patients' irradiation. We aimed to evaluate the incremental benefits of 123I-mIBG SPECT/CT over conventional planar imaging and to estimate the relative increase of radiation dose. We retrospectively evaluated the added value of 56 SPECT/CT performed in 40 children in terms of better characterization of the lesion and its locoregional extension, better lymph node staging, detection of new lesions, and elimination of false positives by a paired comparison between the planar images and the SPECT/CT ones. Then, we calculated the percentage contribution of the additional radiation of the CT in this hybrid imagery. In 88% (49 out of 56) of the examinations, SPECT/CT provided additional information, which was crucial in 20% of the cases. It allowed a better characterization of the lesion and its locoregional extension in 44 cases, a better lymph node staging in 28 cases, the detection of 33 new lesions, and the elimination of 9 false positives. The CT effective dose was significantly lower than the SPECT one. The average additional radiation exposure due to CT was 12% (4-23%). 123I-mIBG SPECT/CT has an undeniable added value that improves planar imaging interpretation and impacts patient management. These potential benefits would justify the low additional radiation induced by the CT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call