Abstract

The effects of nutrients on the biological structure of brackish and freshwater lakes were compared. Quantitative analysis of late summer fish, zooplankton, mysid and macrophyte populations was undertaken in 20–36 shallow brackish lakes of various trophic states and the findings compared with a similar analysis of shallow freshwater lakes based on either sampling (fish) or existing data (zooplankton, mysids and macrophytes). Special emphasis was placed on differences in pelagic top-down control. Whereas the fish biomass (CPUE, multiple mesh-size gill nets) rose with increasing P-concentration in freshwater lakes, that of brackish lakes was markedly reduced at P-concentrations above ca. 0.4 mg P 1−1 and there was a concomitant shift to exclusive dominance by the small sticklebacks (Gasterosteus aculeatus and Pungitius pungitius); as a result, fish density remained relatively high. Mysids (Neomysis integer) were found at a salinity greater than 0.5‰ and increased substantially with increasing P-concentration, reaching levels as high as 13 ind. 1−1. This is in contrast to the carnivorous zooplankton of freshwater lakes, which are most abundant at intermediate P levels. The efficient algal controller, Daphnia was only found at a salinity below 2‰ and N. integer in lakes with a salinity above 0.5‰. Above 2‰ the filter-feeding zooplankton were usually dominated by the less efficient algal controllers Eurytemora and Acartia. In contrast to freshwater lakes, no shift to a clearwatex state was found in eutrophic brackish lakes when submerged macrophytes became abundant. We conclude that predation pressure on zooplankton is higher and algal grazing capacity lower in brackish eutrophic-hypertrophic lakes than in comparable freshwater lakes, and that the differences in trophic structure of brackish and freshwater lakes have major implications for the measures available to reduce the recovery period following a reduction in nutrient loading. From the point of view of top-down control, the salinity threshold dividing freshwater and brackish lakes is much lower than the conventionally defined 5‰.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call