Abstract

A huge discrepancy in morphological diversity exists between poriferans and eumetazoans. The disparate evolutionary outcomes of these two ancient metazoan lineages may be reflected in the composition, architecture, and regulation of genomes of modern representatives. As a case study, we compare the sizes of upstream intergenic regions of genes found within the NK homeobox cluster of the demosponge Amphimedon queenslandica with eumetazoan orthologs. This analysis includes NK genes as well as five structural genes interspersed in the cluster. The upstream intergenic regions of the homeobox genes are significantly smaller in Amphimedon than in eumetazoan orthologs, suggesting that the sponge genes house less cis-regulatory information. In contrast, the upstream intergenic regions of the structural genes are not significantly different. The simple developmental expression patterns of representative NK genes in Amphimedon lends support to the proposition that their regulatory apparatuses, unlike those of bilaterians, do not encode the information for dynamic, pleiotropic gene expression. On the basis of this example, we suggest that the size of the intergenic regions upstream of the transcription start site may act as a proxy for estimating regulatory complexity and reflect the limitations of the sponge genome to direct complex and varied morphogenetic processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call