Abstract
Self-incompatibility is a genetic mechanism enforcing cross-pollination in plants. Hazelnut (Corylus avellana L.) expresses the sporophytic type of self-incompatibility, for which the molecular genetic basis is characterized only in Brassica. The hypothesis that the hazelnut genome contains homologs of Brassica self-incompatibility genes was tested. The S-locus glycoprotein gene (SLG) and the kinase-encoding domain of the S-receptor kinase (SRK) gene of B. oleracea L. were used to probe blots of genomic DNA from six genotypes of hazelnut. Weak hybridization with the SLG probe was detected for all hazelnut genotypes tested; however, no hybridization was detected with PCR-generated probes corresponding to two conserved regions of the SLG gene. One of these PCR probes included the region of SLG encoding the 11 invariant cysteine residues that are an important structural feature of all S-family genes. The present evidence suggests that hazelnut DNA hybridizing to SLG differs significantly from the Brassica gene, and that the S-genes cloned from Brassica will not be useful for exploring self-incompatibility in hazelnut.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.