Abstract
The over-prescription of antibiotics for treatment of infections is primarily to blame for the increase in bacterial resistance. Added to the problem is the slow rate at which novel antibiotics are discovered and the many processes that need to be followed to classify antimicrobials safe for medical use. Xenorhabdus spp. of the family Enterobacteriaceae, mutualistically associated with entomopathogenic nematodes of the genus Steinernema, produce a variety of antibacterial peptides, including bacteriocins, depsipeptides, xenocoumacins and PAX (peptide antimicrobial-Xenorhabdus) peptides, plus additional secondary metabolites with antibacterial and antifungal activity. The secondary metabolites of some strains are active against protozoa and a few have anti-carcinogenic properties. It is thus not surprising that nematodes invaded by a single strain of a Xenorhabdus species are not infected by other microorganisms. In this review, the antimicrobial compounds produced by Xenorhabdus spp. are listed and the gene clusters involved in synthesis of these secondary metabolites are discussed. We also review growth conditions required for increased production of antimicrobial compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.