Abstract

In humans, studies of autoreactive T cells that mediate multiple sclerosis have been largely confined to testing peripheral blood lymphocytes. Little is known how such measurements reflect the disease-mediating autoreactive T cells in the CNS. This information is also not available for murine experimental allergic encephalomyelitis (EAE); the low number of T cells that can be obtained from the blood or the brain of mice prevented such comparisons. We used single-cell resolution IFN-gamma ELISPOT assays to measure the frequencies and functional avidities of myelin basic protein (MBP:87-99)-specific CD4 cells in SJL mice immunized with this peptide. Functional MBP:87-99-specific IFN-gamma-producing cells were present in the CNS during clinical signs of EAE, but not during phases of recovery. In contrast, MBP:87-99-specific T cells persisted in the blood during all stages of the disease, and were also present in mice that did not develop EAE. Therefore, the increased frequency of MBP:87-99-reactive T cells in the blood reliably reflected the primed state, but not the inflammatory activity of these cells in the brain. The functional avidity of the MBP:87-99-reactive T cells was identical in the brain and blood and did not change over 2 mo as the mice progressed from acute to chronic EAE. Therefore, high-affinity T cells did not become selectively enriched in the target organ, and avidity maturation of the MBP:87-99-specific T cell repertoire did not occur in the observation period. The data may help the interpretation of measurements made with peripheral blood lymphocytes of multiple sclerosis patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call