Abstract

Salinity plays a fundamental role in naturally fluctuating environments such as estuaries influencing physiological and biochemical performance of inhabiting biota. Moreover salinity is considered one of the main factors influencing nanoparticles' stability. Thus, the aim of the present paper was to show the impacts induced by different salinities (control-28 and 21) on the chemical behavior of water dispersible multi-walled carbon nanotube (MWCNTs-COOH) and the consequent toxicity in the common ragworm Hediste diversicolor, after long term exposure. Results showed a concentration-dependent toxicity in terms of energy reserves and metabolism, oxidative status and neurotoxicity. In addition, under low salinity (21), the toxicity of the carbon NMs was similar to the impacts measured under control (28), although under salinity 28 the concentrations of MWCNTs-COOH used generated greater alterations in LPO levels and antioxidant enzymes (SOD and GPx). These results demonstrate that higher salinity caused the formation of large-size aggregates, which increased the chance of physical retention, such as gravitational sedimentation, interception and straining of f-MWCNTs generating higher cell injuries than the impacts induced in polychaetes sensitivity to these contaminates due to low salinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.