Abstract

Context. We have recently investigated the origin of chemical signatures observed in Galactic halo stars by means of a stochastic chemical evolution model. We have found that rotating massive stars are a promising way to explain several signatures observed in these fossil stars. Aims. In the present paper we discuss how the extremely metal-poor halo star TYC 8442-1036-1, for which we have now obtained detailed abundances from VLT-UVES spectra, fits into the framework of our previous work. Methods. We apply a standard 1D LTE analysis to the spectrum of this star. We measure the abundances of 14 chemical elements; for Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni and Zn we compute the abundances using equivalent widths; for C, Sr and Ba we obtain the abundances by means of synthetic spectra generated by MOOG. Results. We find an abundance of [Fe/H]= $-$3.5 $\pm$0.13 dex based on our high resolution spectrum; this points to an iron content lower by a factor of three (0.5 dex) compared to the one obtained by a low resolution spectrum. The star has a [C/Fe] = 0.4 dex, and it is not carbon enhanced like most of the stars at this metallicity. Moreover, this star lies in the plane [Ba/Fe] vs. [Fe/H] in a relatively unusual position, shared by a few others galactic halo stars that is only marginally explained by our past results. Conclusions. The comparison of the model results with the chemical abundance characteristics of this group of stars can be improved if we consider in our model the presence of faint supernovae coupled with rotating massive stars. These results seem to imply that rotating massive stars and faint supernovae scenarios are complementary to each other, and are both required in order to match the observed chemistry of the earliest phases of the chemical enrichment of the Universe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.