Abstract

Abstract Characteristics of the Arctic stratospheric polar vortex are examined using reanalysis data with dynamic time warping (DTW) and a clustering technique to determine whether the polar vortex exhibits canonical signs of preconditioning prior to sudden stratospheric warmings (SSWs). The DTW and clustering technique is used to locate time series motifs in vortex area, vortex edge-averaged PV gradients, and vortex edge-averaged wind speeds. Composites of the motifs reveal that prior to roughly 75% of SSWs, in the middle to upper stratosphere, PV gradients and wind speeds in the vortex edge region increase, and vortex area decreases. These signs agree with prior studies that discuss potential signals of preconditioning of the vortex. However, similar motifs are also found in a majority of years without SSWs. While such non-SSW motifs are strongly associated with minor warming signals apparent only in the middle and upper stratosphere, only roughly half of these can be associated with later “significant disturbances” (SDs) that do not quite meet the threshold for major SSWs. The median lead time for sharpening vortex edge PV gradients represented in the motifs prior to SSWs and SDs is ~25 days, while the median lead time for the vortex area and edge wind speeds is ~10 days. Overall, canonical signs of preconditioning do appear to exist prior to SSWs, but their existence in years without SSWs implies that preconditioning of the vortex may be an insufficient condition for the occurrence of SSWs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.