Abstract

BackgroundLeg-length inequality results in an altered position of the spine and pelvis. Previous studies on the influence of leg asymmetry on postural control have been inconclusive. The purpose of this paper was to investigate the effect of structural leg-length discrepancy (LLD) on the control of posture.MethodsWe studied 38 individuals (19 patients with structural LLD, 19 healthy subjects). The examination included measurement of the length of the lower limbs and weight distribution as well as a static posturography. All statistical analyses were performed with Statistica software version 10.0. Non-parametrical Kruskal-Wallis with Dunn’s post test and Spearman test were used. Differences between the groups and correlation between mean COP sway velocity and the value of LLD as well as the value of LLD and weight distribution were assumed as statistically significant at p < 0.05.ResultsThere was a significant difference in the asymmetry of weight distribution between the group of patients and the healthy subjects (p = 0.0005). Differences in a posturographic examination between the groups were not statistically significant (p > 0.05). Meaningful differences in mean COP velocity in mediolateral direction between tandem stance with eyes open and closed were detected in both groups (in controls p = 0.000134, in patients both with the shorter leg in a front and rear position, p = 0.029, p = 0.026 respectively). There was a positive moderate correlation between the value of LLD and the value of mean COP velocity in normal standing in mediolateral direction with eyes open (r = 0.47) and closed (r = 0.54) and in anterioposterior plane with eyes closed (r = 0.05).ConclusionsThe fact that there were no significant differences in posturography between the groups might indicate compensations to the altered posture and neuromuscular adaptations in patients with structural leg-length inequality. LLD causes an increased asymmetry of weight distribution. This study confirmed a fundamental role of the sight in postural control, especially in unstable conditions. The analysis of mean COP sway velocity may suggest a proportional deterioration of postural control with the increase of the value of leg-length asymmetry.Trial registration numberTrial registry: ClinicalTrials.gov NCT03048656, 8 February 2017 (retrospectively registered).

Highlights

  • Leg-length inequality results in an altered position of the spine and pelvis

  • No significant disturbances of postural control in individuals with leg-length discrepancy (LLD) were found in the presented study

  • That can support the thesis about posture compensations caused by a neuromuscular adaptation

Read more

Summary

Introduction

Leg-length inequality results in an altered position of the spine and pelvis. Structural leg-length inequality caused by the shortening of a segment of the extremity, results in an altered position of the lower limb joints, the pelvis and the spine in static as well as dynamic conditions [1,2,3,4,5]. That may induce a disturbance of postural control, which could increase the risk of potential falls in patients undergoing a lengthening procedure with external fixation methods. Detecting these deficits would indicate the need of including balance exercises to a physical therapy management in order to prevent injuries and complications. It was noticed that this value is a threshold for compensation of the pelvis to

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.