Abstract

Stream water residence times within streambed sediments are key values to quantify hyporheic processes including sediment thermal regime, solute transient storage, dilution rates and biogeochemical transformations, such as those controlling degassing nitrous oxide. Heterogeneity of the streambed sediment hydraulic properties has been shown to be potentially an important factor to characterize hyporheic processes. Here, we quantify the importance of streambed heterogeneity on residence times of dune-like bedform induced hyporheic fluxes at the bedform and reach scales. We show that heterogeneity has a net effect of compression of the hyporheic zone (HZ) toward the streambed, changing HZ volume from the homogenous case and thus inducing remarkable differences in the flow field with respect to the homogeneous case. We unravel the physical conditions for which the commonly used homogenous field assumption is applicable for quantifying hyporheic processes thus explaining why predictive measures based on a characteristic residence time, like the Damköhler number, are robust in heterogeneous sand bedded streams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.