Abstract

Abstract Spatial aggregation of plants of high nectar production, receiving an enhanced pollinator service is known to occur in Echium vulgare . Moreover, an emanating effect of nectar production on pollinator visits may occur, i.e. many pollinator visits may be observed around high nectar patches. Consequently, gene flow within patches of plants of high nectar production and their close neighbours may result in genetic structure. In this study, we investigated whether aggregation of total nectar production (nectar production per flower×number of flowers) and its emanating effect resulted in genetic structure in a natural E. vulgare population. We compared the spatial structure of total nectar production, pollinator visits and microsatellite markers using spatial autocorrelation analysis. Increased geitonogamy, caused by longer boutlengths in plants of high nectar production may generate genetic structure. We estimated selfing rates of plants of the highest and lowest total nectar production. Spatial aggregation of total nectar production occurred on a relatively small scale up to 2.83 m. A significant emanating correlation between total nectar production and pollinator visits was observed on a relatively large scale up to a 4.24 m. Thus, around patches of high nectar production numbers of pollinator visits were relatively high, while few visits were observed around patches of low nectar production. Weak genetic structure was present on a small scale up to 2.20 m. This corresponded with the scale of aggregation of total nectar production. High gene flow around the patches of high nectar production seems to weaken genetic structure. This is supported by the relatively low selfing rates. The average selfing rate of the plants of highest nectar production was 8.8% and that of the plants of lowest nectar production 5.0%. Low gene flow within and around low nectar patches sustain a weak genetic structure or, conversely, may have caused it in the first instance. Results indicate the importance of spatial structure of nectar production for pollinator movement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call