Abstract

Growing winter forages, such as brassicas and fodder beets, is a common feed strategy to build body condition for non-lactating cows, prior to calving, in the temperate regions of New Zealand. However, the large quantities of feed grown, ~14-20 tonnes ha-1, and resulting high stocking rates, means large volumes of urine are deposited during grazing, over relatively small areas, on cool, bare and often wet soils. These conditions create a high potential for large N leaching losses. Sowing a catch crop might be one way to mitigate this potential but most catch crops are sown in late-summer/autumn, not late winter/spring, so this study’s objectives were to examine the potential of a cold-tolerant cereal, oats, to establish and take up soil N over this period. A study was undertaken using free-draining repacked soil cores in two climate-controlled growth chambers at 6° and 10°C, and at two lighting intensities, 5 and 10 MJ m-2, reflecting the mean soil temperature (0-100 mm) and light levels experienced in Canterbury, New Zealand, around late winter and mid spring, respectively. The cores all received an application of 15N-labelled urine (350 kg N ha-1) and two weeks later, oats were sown in half the soil cores, with the remainder left fallow. Sowing oats at 6° and 10°C both proved highly effective in reducing nitrate leaching loss by around 33% and 75%, respectively, compared to fallow treatments. Soil temperature, however, was the chief driver of oats development, growing an order of magnitude more rapidly at 10°C and reducing nitrate leaching loss quickly through a combination of increased N uptake and reduced drainage. However, ammonia oxidising bacteria (AOB) abundance in 10°C fallow treatments increased more rapidly after urine application than at 6°C, meaning soil nitrate concentrations rose quickly, leaching twice as much nitrate as the 6°C fallow treatments after 90 days. Greater plant growth (10-times more) at 10°C than at 6°C, 75 days after sowing, was offset to some degree by greater N% and N content in the plant stems and roots at 6°C (2-4 times more). Higher light intensity increased evaporative water loss in both 6° and 10°C chambers, reducing drainage and nitrate leaching, and increasing the rate of oats development at 10°C. The sowing of oats as a catch crop following simulated winter forage grazing conditions shows promise as an effective means to limit nitrate leaching. Further research, however, is needed to show that a catch crop can be sown successfully in most years at farm paddock scale across a range of soil conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call