Abstract

Sex-specific niche segregation is often used to explain sexual size dimorphism (SSD). However, whether food niche partitioning between sexes occurs as a case of sexual size dimorphism or by other mechanisms, such as behavioural dimorphism or habitat segregation, remains poorly understood. To evaluate the nature and extent of food-niche differentiation between sexes in a solitary predator I examined variation in the diet of male and female pine martensMartes martes Linnaeus, 1758 in years of high and low rodent abundance. Small mammals were the most important prey for pine martens in years of both low and high rodent abundance (occurring in more than 49% of scats). Birds, invertebrates and plant material were relatively common food items in summer diet, whereas ungulate carcasses were often consumed in autumn—winter. In general, males consumed more ungulate carcasses, plant material, amphibians and reptiles than did females, whereas females preyed more on squirrels and birds than males. There was significant seasonally dependent, between-sex variation in the occurrence of shrews, small rodents, other mammals, birds and invertebrates in marten diet. Whereas the occurrence of bank vole, birds, carcasses and plant material changed between sexes, seasons and years with various rodent abundances, both sexes consumed larger prey and had increased food niche breadth in years of low compared with high rodent abundance. Neither prey size nor food niche breadth were significantly different between males and females. The food-niche overlap between sexes was consistently lower in spring and in years of low rodent abundance. A wider geographical comparison of different marten populations showed that the diet of males and females varied significantly between locations. Females consistently preyed on squirrels and birds, whereas males fed more often on ungulate carcasses and plant material. Local and geographical comparison of male and female diets suggest that food-niche partitioning between male and female pine martens changes across different habitat and food conditions, and is not related to sexual size dimorphism, but rather to behavioural differences between sexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.