Abstract

The role of grain boundaries in limiting irradiation damage in nanocrystalline materials is often correlated with the grain boundary sink efficiency. Here, we demonstrate on a tungsten material system (which has very distinct vacancy and interstitial mobilities) that sink efficiency does not unequivocally describe how grain boundaries impact irradiation damage. Rather, it reflects a particular defect diffusion equation that can change if any of the bulk conditions change. Even when denuded zone formation does not occur and grain boundaries have zero sink efficiencies, grain boundaries still impact the performance of nanocrystalline materials under irradiation by acting as a saturable defect storage site. However, denuded zone formation can occur under a necessary requirement of extra defect recombination at the grain boundaries (which, for example, is not possible when vacancy migration does not occur). These insights provide answers to several outstanding questions regarding the sink efficiency of a grain boundary and assist in parametrizing the role of grain boundaries in limiting irradiation damage in nanocrystalline materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.