Abstract

Viviparity and placentation have evolved many times within squamate reptiles, but the sequence in which the attendant morphological modifications occur remains unclear. In particular, it is unknown whether a reduction of the egg shell occurs concurrently with longer periods of egg retention (i.e. increasingly advanced stages of embryogenesis at oviposition) or whether such thinning occurs after viviparity has evolved. To investigate this question, we evaluated the prediction that shell morphology and permeability vary systematically with the capacity to support embryonic development in utero (as judged by the maximum embryonic stage attainable in utero) in five species of oviparous sceloporine lizards and one lizard species in the sister genus Urosuarus. Despite major differences among species in the capacity to support embryogenesis, shell morphology (structure, thickness) and physiology (permeability to water vapour) did not vary as predicted. These results raise the intriguing possibility that other features associated with simple placentation (e.g. increased oviductal and chorioallantoic vascular density) evolve concurrently with longer periods of egg retention and viviparity and that shell thinning may occur subsequent to the evolution of viviparity, at least in sceloporine lizards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.