Abstract

Considerable controversy has been generated by the observation that the Earth's climate has warmed over the last century. Public policy decisions hinge on the question of whether this trend is natural climate variability or the result of the increase in atmospheric concentrations of greenhouse gases. The strength of the enhanced greenhouse effect depends, in large part, on the uncertain value of climate sensitivity. In this paper climate sensitivity is estimated from the global temperature record by assuming models for greenhouse forcing, climate response to forcing, and climate variability. We find optimal estimates of climate sensitivity are remarkably insensitive to assumptions, at least for forcing excluding the effect of aerosols, and these values are considerably less than most predictions arising from General Circulation Models (GCM's). It is, however, the statistical significance of these estimates that is sensitive to assumptions about climate variability. Assuming climate variability with a time scale of a decade or less, climate sensitivity is estimated to be significantly greater than zero, but also significantly lower than that predicted by GCM's. Climate variability with a century time scale is consistent with both the recent temperature record and the pre-instrumental record for the last millenium; if this type of variability is assumed, the estimate of climate sensitivity has a confidence band wide enough to encompass both zero and typical values obtained by GCM's. With century time-scale variability it will be several decades before confident estimates can be made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call