Abstract

BackgroundPeptide receptor radionuclide therapy (PRRT) with 177Lu-[DOTA0,Tyr3]octreotate (177Lu-octreotate) is generally performed using a fixed activity of 7.4 GBq (200 mCi) per course bound to 180 to 300 μg of the peptide. While this single activity may lead to suboptimal radiation doses in neuroendocrine tumors (NET) with advanced or bulky disease, dose escalation has been withheld due to concerns on potential tumor somatostatin receptor saturation with reduced efficacy of the added activity. In vivo saturation effects during standard-dose PRRT based on quantification of pre- and intra-therapeutic 68Ga-DOTATOC positron emission tomography (PET) imaging might guide potential dose escalation.MethodsFive patients with metastatic NET of the pancreas underwent 68Ga-DOTATOC PET/CT before and directly after standard-dose PRRT with 177Lu-octreotate. In each patient, four target tumor lesions, normal liver parenchyma, and the spleen were evaluated and the ratios of SUVmax of the target lesions to liver (SUVT/L) and spleen (SUVT/S) were calculated; paired Student's t test was performed with p < 0.05 for pre-/intra-PRRT comparisons.ResultsThe mean intra-therapeutic tumor SUVmax showed no significant change (per-lesion paired t test) compared to pretreatment values (-9.1%, p = 0.226). In contrast, the SUVmax of the normal liver parenchyma and spleen were significantly lower directly after infusion of 7.4 GBq 177Lu-octreotate. Consequently, SUVT/L and SUVT/S increased significantly from pretreatment to intra-therapeutic examination: SUVT/L (p < 0.001) from 2.8 ± 1.3 (1.3 to 5.8) to 4.7 ± 3.0 (2.1 to 12.7) and SUVT/S (p < 0.001) from 1.2 ± 0.7 (0.4 to 3.0) to 3.5 ± 1.5 (1.6 to 7.9).ConclusionsThis small retrospective study provides preliminary evidence for the absence of relevant in vivo saturation of somatostatin receptor subtype 2 (sst2) in tumor lesions during PRRT with standard activities of 177Lu-octreotate in contrast to normal tissue (liver, spleen) showing limited receptor capacity. After being confirmed by larger series, this observation will have significant implications for PRRT: (1) Higher activities of 177Lu-octreotate might be considered feasible in patients with high tumor disease burden or clinical need for remission, and (2) striving to reduce the amount of peptide used in standard preparations of 177Lu-octreotate appears futile.

Highlights

  • Peptide receptor radionuclide therapy (PRRT) with 177Lu-[DOTA0,Tyr3]octreotate (177Lu-octreotate) is generally performed using a fixed activity of 7.4 GBq (200 mCi) per course bound to 180 to 300 μg of the peptide

  • Neuroendocrine tumors (NET) commonly overexpress somatostatin receptors, in particular the subtype 2, which are targeted for tumor-directed imaging and therapy [1,2,3,4]. 68Ga-labeled somatostatin analogues with high affinity to sst2 such as 68Ga-DOTA-D-Phe1-Tyr3-octreotate or 68Ga-DOTA-D-Phe1-Tyr3-octreotide are widely used for positron emission tomography (PET) imaging of neuroendocrine tumors (NET) [5,6,7]

  • The same sst2 ligands coupled to β-emitters 90Y or 177Lu are successfully utilized for targeted radionuclide therapy, peptide receptor radionuclide therapy (PRRT) comprising a well-established, effective systemic treatment modality in patients with inoperable, metastatic gastroenteropancreatic NET (GEP NET) [8,9,10,11]

Read more

Summary

Introduction

Peptide receptor radionuclide therapy (PRRT) with 177Lu-[DOTA0,Tyr3]octreotate (177Lu-octreotate) is generally performed using a fixed activity of 7.4 GBq (200 mCi) per course bound to 180 to 300 μg of the peptide While this single activity may lead to suboptimal radiation doses in neuroendocrine tumors (NET) with advanced or bulky disease, dose escalation has been withheld due to concerns on potential tumor somatostatin receptor saturation with reduced efficacy of the added activity. It can be expected that this will lead to suboptimal treatment in some patients with more advanced/bulky tumor disease and a clinical need for tumor remission The objective of this retrospective study was to investigate potential in vivo saturation of somatostatin receptors observed during standard PRRT according to quantification of intra-treatment PET studies

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.