Abstract

Despite the fact that neural tube defects (NTDs) are the most common congenital malformations of the central nervous system, investigators have yet to identify responsible gene(s). Research efforts have been productive in the identification of environmental factors, such as periconceptional folic acid supplementation, that modulate risk for the development of NTDs. Studies of the folic acid biosynthetic pathway led to the discovery of an association between elevated levels of homocysteine and NTD risk. Researchers subsequently identified single nucleotide polymorphisms in the gene coding for the enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR). Association studies suggested it was a potential risk factor for NTDs, because the thermolabile form of the enzyme led to elevated homocysteine concentrations when folic acid intake is low. Numerous studies analyzing MTHFR variants have resulted in positive associations with increased NTD risk only in certain populations, suggesting that these variants are not large contributors to the etiology of NTDs. With our limited understanding of the genes involved in regulating NTD susceptibility, the paucity of data on how folic acid protects the developing embryo, as well as the observed decrease in birth prevalence of NTDs following folic acid supplementation and food fortification, it makes little sense for prospective parents to be tested for MTHFR variants, or for variants of other known folate pathway genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call