Abstract

Summary For heavy-oil-recovery applications, mobility control is more important than interfacial-tension reduction, and therefore importance should be given to the recovery of remaining mobile oil by enhanced sweep efficiency. Although the relative roles of polymer viscosity and elasticity in capillary-trapped residual light-oil recovery have been studied extensively, their roles in sweeping mobile viscous oil have not been explored. Injectivity is vital for heavy-oil-recovery applications, and polymer selection is performed solely using criteria that is based on shear rheology. In this paper, the influence of viscous (shear) resistance and elastic (extensional) resistance of viscoelastic polymer on mobile-heavy-oil recovery and injectivity is investigated through the combination of bulk shear/extensional rheology and single-phase and multiphase coreflood experiments at a typical reservoir-flooding rate of 1 ft/D. Two polymer solutions with different concentrations and salinities are selected such that a polymer with low molecular weight (MW) [hydrolyzed polyacrylamide (HPAM) 3130] provides higher shear resistance than a high-MW polymer (HPAM 3630). Extensional characterization of these two polymer solutions performed using a capillary breakup extensional rheometer revealed that HPAM 3630 provided higher extensional viscosity than HPAM 3130. The results show that the behaviors of polymers in extension and shear are completely different. Two multiphase and two single-phase experiments are conducted at low flux rate to investigate the roles of extensional viscosity on mobile-heavy-oil recovery and high flux rates on injectivity. After 1 pore volume (PV) of polymer injections, higher-concentration and lower-MW HPAM 3130 contributes to approximately 17% higher incremental recovery factor vs. lower-concentration and higher-MW HPAM 3630. The core-scale pressure drop generated by HPAM 3130 is more than twice the pressure drop generated by HPAM 3630. Under low-flux-rate conditions at the core scale, shear forces dominate, and displacing fluid with higher shear viscosity contributes to better sweep. HPAM 3630 exhibits a shear-thickening phenomenon and possesses the apparent viscosity of approximately 90 cp at the flux rate of approximately 90 ft/D. In contrast, HPAM 3130 continued showing shear thinning and has the apparent viscosity of approximately 70 cp at approximately 90 ft/D. This signifies the role of extension rheology on the injectivity at higher flux rates. Results revealed that while the extensional rheological role toward sweeping the mobile heavy-oil recovery at low flux is lesser compared with the shear role, its negative role on the polymer injectivity is very significant. Polymer-selection criteria for heavy-oil-recovery applications should incorporate extensional rheological parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call