Abstract

Amine oxidases (AOs) oxidize polyamines (PAs) to aldehydes, simultaneously producing the removed amine moiety and hydrogen peroxide (H2O2). AOs, which include copper-containing amine oxidases (CuAOs) and flavin-containing amine oxidases (PAOs), are stress-inducible enzymes involved in both PA homeostasis and H2O2 production. Here, we suggest that H2O2 derived from PAO-mediated PA catabolism has a role in inducing root xylem differentiation during plant stress responses, whereas its involvement in this event during plant development under physiological conditions is not suitably supported by the currently available data. Moreover, we show that spermidine (Spd) supply leads to a higher induction of cell death in wild-type (WT) tobacco (Nicotiana tabacum) plants as compared to tobacco plants over-expressing maize (Zea mays) PAO (S-ZmPAO) in the cell wall, in apparent contradiction with the already reported results obtained by the analysis of the corresponding WT and S-ZmPAO Spd-untreated plants. Considering this last observation, we propose that PAs diversely affect plant development and stress responses depending on the expression levels of AOs, which in turn may lead to different plant responses by altering the PAs/H2O2 balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.